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An approximate theoretical treatment is given for detachment of an elastomer from a 
rigid spherical inclusion by a tensile stress applied to the elastomeric matrix. The inclusion 
is assumed to have an initially-debonded patch on its surface and the conditions for 
growth of the patch are derived from fracture energy considerations. Catastrophic de- 
bonding is predicted to occur at a critical applied stress when the initial debond is small. 
The strain energy dissipated as a result of this detachment, and hence the mechanical 
hysteresis, are also evaluated. When a reasonable value is adopted for Young's modulus E 
of the elastomeric matrix, it is found that detachment from small inclusions, of less than 
about 0.1 mm in diameter, will not occur, even when the level of adhesion is relatively 
low. Instead, rupture of the matrix near the inclusion becomes the preferred mode of 
failure at an applied stress given approximately by El2. For still smaller inclusions, of 
less than about 1/~m in diameter, rupture of the matrix becomes increasingly difficult, 
due to the increasing importance of a surface energy term. These considerations account 
for the general features of reinforcement of elastomers. Small-particle fillers become 
effectively bonded to the matrix, whereas larger inclusions induce fracture near them, 
or become detached from the matrix, at applied stress that can be calculated from the 
particle diameter, the strength of adhesion, and the elasticity of the matrix material. 

1. I n t r o d u c t i o n  
Elastomers are often filled with high loadings of 
relatively rigid particulate materials in order to 
stiffen and strengthen them. These effects depend 
strongly upon the particle size of the filler and 
upon the degree of bonding between the elastomer 
and the Idler [1]. When the particle size is small, 
less than about 1/lm, even a moderate degree of 
interaction between the elastomeric matrix and the 
filler seems to be sufficient to produce a surpris- 
ingly high level of reinforcement. When the par- 
ticle size is relatively large, the matrix seems to be 
easily detached from the filler particles at rela- 
tively low tensile stresses and the level of reinforce- 
ment is correspondingly low [ 1 ]. 

The tensile stress at which an elastic matrix will 
become detached from a rigid spherical inclusion 
is derived here on simple theoretical grounds. Only 
low concentrations of filler are considered, such 
that the strain fields around each particle do not 
interact to a significant degree, and the matrix 

2884 

itself is treated as a linearly-elastic material, with 
Young's modulus E. Detachment is assumed to 
start at an already-debonded region, present 
initially on the surface of the particle. It is 
assumed to take place by growth of this debonded 
region when the elastic strain energy thereby 
released in the matrix is greater than the energy 
required for further debonding. This is a straight- 
forward application of Griffith's fracture criterion 
[2]. It leads to a prediction of catastrophic de- 
bonding when the initially-debonded region is 
small in size. Moreover, the amount of strain 
energy lost from the system as a result of debond- 
ing can be readily evaluated from the difference 
between the strain energy levels before and after 
debonding has taken place. An estimate can be 
made in this way of the additional mechanical 
hysteresis due to detachment of the matrix from 
the filler. 

A somewhat similar analysis has recently been 
put forward, dealing with the conditions for 
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detachment from a spherical inclusion under a 
triaxial tension [3]. That study differs from the 
present analysis in two important respects. The 
process of detachment was assumed to take place 
simultaneously at all points on the spherical 
surface, rather than progressively from an initially 
debonded region. Secondly, the strain energy 
released by dilation of the matrix after detachment 
has taken place was considered to be wholly 
expended in the detachment process itself, in 
the form of bond fracture energy. In contrast, the 
analysis developed here, although rather approxi- 
mate in nature, treats the debonding process as a 
continuous one, starting from the hypothetical 
initially-debonded region on the surface of the 
inclusion. It leads to the prediction of both 
stable and unstable (i.e. catastrophic) modes of 
growth of the debond, depending upon the size 
of the initial debond relative to the size of the 
inclusion. 

In a final section, other modes of failure are 
considered. It is shown that detachment from 
small inclusions is improbable, even when the 
level of adhesion is low and that fracture of the 
matrix itself in the vicinity of the inclusion 
becomes increasingly difficult as the size of the 
inclusion is reduced. These conclusions explain, 
at least in part, the reinforcing action of small 
particles. 

2. Theoretical considerations 
2.1. Critical stress for detachment 
A single spherical inclusion within an elastic 
matrix is shown schematically in Fig. 1. A small 
circular area on the surface of the inclusion is 
assumed to be debonded from the matrix initially. 
Growth of this debonded patch will take place 
when the tensile stress a applied to the specimen 
at its distant edges reaches a cTitical value, denoted 
a a. A relation for this critical stress is now derived 
by means of an approximate energy analysis. 

For simplicity, the initially-debonded patch is 
a s sumed  to be located :on the surface of the 

inclusion in the direction of the applied stress, 
Fig. 1. Other locations would result in higher 
values of the critical stress, as will be shown 
later, so that this assumption leads to minimum 
values for aa. The stress field set up in the material 
is divided conceptually into two regions, as 
shown in Fig. 1 : a far-field region where the strain 
energy density U is assumed to be unaffected 
by the presence of the debonded area, and a 

t o" 
[U] T,..::'..: :" -... 

."'" '-: .-; . . . . .  i-" "." "" "'"- 
..."".-/ ...... ~ ..... . .  i . . . i \  . . . . .  :, 

,-... ....... i ....... i. .... !. .... - 

[u] 
Figure 1 Sketch of a single inclusion showing debonded 
area and associated volume Ax V effectively free from stress. 

region in the immediate vicinity of the debonded 
zone, shown shaded in Fig. 1, within which the 
strain energy density is assumed to be effectively 
zero because the debonded zone cannot transmit 
a tensile stress to the matrix. A similar assump- 
tion was made by Rivlin and Thomas in their 
analysis of an edge crack in a homogeneous elastic 
solid [41. 

The volume AV of the unstressed region will 
be given by 

A V  = k(r sin 0) 3 (1) 

on general dimensional grounds, where rO is the 
radius of the circular debonded zone and k is a 
dimensionless quantity evaluated later. The areaA 
of the debonded zone is 2nr 2 (1 - cos 0). The loss 
AW in elastic strain energy when the debonded 
zone increases in area by zXA is then given by 
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= (3k/47r)(Ur sin 20)ZL4. (2) 

In accordance with Griffith's fracture criterion, it 
is assumed that the debonded area will grow if this 
reduction in stored strain energy is equal to, or 
greater than, the energy required for debonding, 
namely GaZL4, where G a is the bond fracture 
energy per unit of bonded surface. The criterion 
for debonding thus becomes 

U >~ 47rGa/3kr sin 20. (3) 

In terms of the applied tensile stress o, U is given 
by ~2/2E where E is Young's modulus for the 
composite material. The applied stress Oa necessary 
to cause debonding is therefore given by 

o2 = 81rGaE/3kr sin 20. (4) 

In order to obtain a value for the numerical 
quantity k, this result is now specialized to the 
case when 0 is small and the debonded zone 
becomes a small circular region of radius a = rO. 
Mossakovskii and Rybka have treated the corre- 
sponding case of the detachment of an elastic 
half-space from a rigid plate when a circular 
debond of radius a is located at the interface 
[5]. They deduced that 

o2, = 27rGaE/3a. (5) 

On comparing Equations 4 and 5, taking 0 to be 
small, a value of 2 is obtained for the numerical 
parameter k. 

It is clear from Equation 4 that the tensile 
stress for detachment is quite large both when the 
radius rO of the initial debond is small, and also 
when the debonded region is large, when 0 ~-- 90 ~ 
It passes through a minimum value when 0 = 45 ~ 
i.e. for inclusions which are debonded initially 
over a substantial fraction of their surface. This 
minimum value of oa is given by 

o 2 = 41rGaE/3r. (6) 
am.in 

It is similar in magnitude to the stress causing 
detachment of an elastic material from a rigid 
substrate, initiated by a debond of radius r 
(Equation 5). It is also similar to that deduced 
for detachment from a spherical inclusion of 
radius r under a triaxial tension ot [3], 

o3 = 8GaE/3r. 

It represents (in the present instance) the lowest 
stress at which detachment would occur under 
the most favourable circumstances, i.e. when a 
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relatively large debond is present at the inclusion 
surface initially, and it is located in a particularly 
favourable way with respect to the direction of 
the applied tension. Under all other circumstances 
the debonding stress will be higher than that given 
by Equation 6. Indeed, when the size of the initial 
debond, represented by the angle 0, is small, it is 
clear from Equation 4 that debonding will take 
place in a catastrophic way because the stress 
required to maintain the debonding process 
decreases as 0 increases. Once the applied stress 
and stored elastic energy reach their critical levels, 
then the debond will grow abruptly until sin 20 
attains its original value again. If 0 is small to start 
with, then debonding will take place until 0 -~ 90 ~ 
i.e. until debonding is virtually complete. 

2.2. Energy dissipated in debond ing  
The loss of stored elastic energy as a result of this 
abrupt debonding can be evaluated by means of 
Equation 1. The unstressed zone will increase from 
its small initial size to a t'mal volume of approxi- 
mately 2r a , when k is given the value of 2 deduced 
earlier. Thus, the decrease in strain energy is 
approximately 2Ur a. If it is assumed, as seems 
likely, that detachment occurs simultaneously at 
both poles of the inclusion, then the decrease in 
strain energy for each inclusion becomes 4Ur 3. 
The number n of inclusions per unit volume of 
the filled material is given by 

n = 3c/41rr 3 

where c is the volume fraction of the composite 
material occupied by inclusions. Thus, the total 
reduction in strain energy density caused by 
debonding is obtained as 

AU/Uo = 3c/rr, (7) 

where Uo denotes the input strain energy up to 
the point of  detachment. The ratio AU/Uo,  
referred to hereafter as the mechanical hysteresis 
ratio H, is therefore predicted to be independent 
of particle size and proportional to the volume 
fraction c of particles in the composite. 

It should be noted that Equation 7 is based 
upon two special assumptions, which will only 
hold under quite restricted circumstances. The 
ftrst is that the stress fields around each particle 
are assumed not to interact significantly. This 
implies that the particles are separated by distances 
comparable to, or greater than, their diameters, 
and this in turn implies that their volume fraction 



e is small, not more than about 10 per cent. The 
second assumption is that small debonded areas 
are present initially on the particle surface, and 
that they are favourably located with respect to 
the applied stress direction. This implies that there 
are, in fact, many small debonded areas per particle. 
Those suitably positioned with respect to the 
applied stress will presumably act as nuclei for the 
detachment process. 

3. Other modes of  failure 
The mechanism of  detachment treated in the 
preceding section is likely to be valid only for 
relatively large particles, weakly bonded to the 
matrix, and different mechanisms of detachment 
will operate under other circumstances. For 
example, when the level of  adhesion between the 
matrix and the inclusion is sufficiently high, the 
elastomeric matrix will undergo cavitation in 
the vicinity of the particle [6]. In this case, the 
matrix does not detach from the particle directly, 
but instead it undergoes internal rupture near 
the particle surface, nucleated by a small precursor 
void present within the elastomeric matrix. The 
void is torn open by triaxial tensions generated in 
the neighbourhood of the particle. The condition 
for this mode of failure to occur is that the applied 
tensile stress must reach a critical value, given 
by [6, 7] 

of (E + e)/2, (8) 

where P denotes the ambient pressure (usually 
atmospheric pressure and hence small in comparison 
with E). 

On comparing the minimum value of the 
critical stress for detachment, Equation 6, with 
the predictions of Equation 8 for the cavitation 
stress of, it can be seen that detachment will not 
take place if 

Ga/r > 3E/16rr (9) 

because the detachment stress aa then exceeds 
the stress of for cavitation. When E is given a value 
of  3MPa, characteristic of rubbery solids, and 
Ga a value of 10Jm -2, representing a relatively 
weakly bonded interface [8], then Equation 9 
predicts that detachment will not take place for 
particles having a diameter of less than about 
0.1 mm. Instead, the matrix will abruptly tear 
open near the particle at the applied stress given 
by Equation 8. 

Although this failure process is quite different 

from the detachment mechanism considered 
earlier, nevertheless the mechanical hysteresis ratio 
H will still be given by Equation 7, to a good 
approximation, because the assumptions on which 
that equation was based are still valid. The cavities 
form abruptly and grow to a size that relieves the 
high stresses set up in the vicinity of the particle 
surface in the same way as the abrupt growth of  
a debond on the particle surface. Indeed, the 
cavities often tear towards the particle surface 
as they develop and bring about debonding in this 
way [6]. The initial failure stress, however, is quite 
different and depends only upon Young's modulus 
E (Equation 8). 

If the precursor voids within the elastomeric 
matrix are even smaller, less than about 100nm 
in diameter, then the critical applied stress of will 
no longer be given by Equation 8. Instead, an 
additional constraint on the expansion of a void 
becomes significant, arising from its own surface 
energy. This additional term, given by 27/a where 
7 denotes the surface energy of the matrix and a 
denotes the radius of the void, becomes large when 
the radius a is small. Thus, the applied stress must 
overcome both the elastic resistance to expansion, 
represented by E in Equation 8, and a large surface 
energy contribution as well [9]. 

From simple dimensional considerations it is 
clear that no large precursor voids can be located 
within the immediate vicinity of a small inclusion. 
Indeed, it seems reasonable to assume that the 
largest void that can exist near to an inclusion will 
be about one order of magnitude smaller in size 
than the inclusion itself. Thus, cavitation stresses 
for particles of less than about 1/lm in diameter 
are likely to be considerably larger than those 
predicted by Equation 8, due to the large surface 
energy contribution in these cases. Moreover, the 
smaller the particle, the larger is the stress required 
to create a cavity in its vicinity by tearing open a 
precursor void. 

It can be concluded that an elastomeric matrix 
will not detach from small particles, less than 
about 0.1 ram in size, by debonding, even when 
the level of adhesion is low. Furthermore, the 
process of local cavitation in the matrix, leading 
to the same effects as detachment, will become 
increasingly difficult as the particle size is further 

l 
reduced. Rigid inclusions of less than about 1/~m 
in size are likely to be effectively bonded to 
the matrix in all circumstances and thus act as 
reinforcing fillers, in accord with experience [1]. 
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